Risk Related Brain Regions Detected with 3D Image FPCA

نویسندگان

  • Ying Chen
  • Wolfgang K. Härdle
  • He Qiang
  • Piotr Majer
چکیده

Risk attitude and perception is reflected in brain reactions during RPID experiments. Given the fMRI data, an important research question is how to detect risk related regions and to investigate the relation between risk preferences and brain activity. Conventional methods are often insensitive to or misrepresent the original spatial patterns and interdependence of the fMRI data. In order to cope with this fact we propose a 3D Image Functional Principal Component Analysis (3D Image FPCA) method that directly converts the brain signals to fundamental spatial common factors and subject-specific temporal factor loadings via proper orthogonal decomposition. Simulation study and real data analysis show that the 3D Image FPCA method improves the quality of spatial representations and guarantees the contiguity of risk related regions. The selected regions provide signature scores and carry explanatory power for subjects’ risk attitudes. For in-sample analysis, the 3D Image method perfectly classifies both strongly and weakly risk averse subjects. In out-of-sample, it achieves 73-88% overall accuracy, with 90-100% rate for strongly risk averse subjects, and 49-71% for weakly risk averse subjects. ∗This research was supported by the Deutsche Forschungsgemeinschaft through the SFB 649 Economic Risk.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating fMRI data into 3D conventional radiotherapy treatmentplanning of brain tumors

Introduction: This study was aimed to investigate the beneficial effects of functional magnetic resonance imaging (fMRI) data in treatment planning for patients with CNS tumors in order to decrease the injury of functional regions of the brain followed by increase in life quality and survival of patients. This study pursues a novel approach in planning for the treatment of brai...

متن کامل

Surface reconstruction of detect contours for medical image registration purpose

Although, most of the abnormal structures of human brain do not alter the shape of outer envelope of brain (surface), some abnormalities can deform the surface extensively. However, this may be a major problem in a surface-based registration technique, since two nearly identical surfaces are required for surface fitting process. A type of verification known as the circularity check for th...

متن کامل

Functional principal component model for high-dimensional brain imaging

We explore a connection between the singular value decomposition (SVD) and functional principal component analysis (FPCA) models in high-dimensional brain imaging applications. We formally link right singular vectors to principal scores of FPCA. This, combined with the fact that left singular vectors estimate principal components, allows us to deploy the numerical efficiency of SVD to fully est...

متن کامل

Circle of Willis Variants: Fetal PCA

We sought to determine the prevalence of fetal posterior cerebral artery (fPCA) and if fPCA was associated with specific stroke etiology and vessel territory affected. This paper is a retrospective review of prospectively identified patients with acute ischemic stroke from July 2008 to December 2010. We defined complete fPCA as absence of a P1 segment linking the basilar with the PCA and partia...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015